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Abstract

A wide variety of neural and statistical methods are available for nonlinear empirical modeling based on different modeling approaches.
Selecting the best method for a given task requires deep understanding of their similarities and differences and a systematic approach to
method selection. This paper presents a common framework for gaining insight into neural and statistical modeling methods. The
framework is then used to unify methods that combine inputs by linear projection before applying the basis function. The result of this
unification is a new method called nonlinear continuum regression (NLCR) that unifies ordinary least squares regression (OLS), partial
least squares regression (PLS), principal components regression (PCR) and ridge regression (RR), and nonlinear methods such as,
backpropagation networks (BPN) with a single hidden layer, projection pursuit regression (PPR), nonlinear partial least squares regression
(NLPLS), and nonlinear principal component regression (NLPCR), by spanning the continuum between these methods. The unification is
facilitated by developing a common objective function for all methods in this category, and an efficient hierarchical training algorithm,
illustrative examples on synthetic data and materials structure-property prediction demonstrate the ability of NLCR to specialize to the
best existing method based on linear projection, or to a method between existing methods, resulting in the most general model from this
class of methods.  1998 Elsevier Science S.A. All rights reserved.
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1. Introduction less basis functions for comparable performance than
neural techniques such as, BPN.

In addition to artificial neural networks (ANN), several Given this broad variety of empirical modeling methods,
statistical methods are also available for nonlinear empiri- it is important to select the best method for a given
cal modeling. These methods include, projection pursuit modeling task. Proper selection requires a deep under-
regression (PPR), nonlinear principal component regres- standing of all the modeling methods and a systematic
sion (NLPCR), nonlinear partial least squares regression approach to model selection, neither of which are easily
(NLPLS), classification and regression trees (CART), and available. This paper presents a common framework for
multivariate adaptive regression splines (MARS). These comparing empirical modeling methods and enabling
neural and statistical empirical modeling methods differ in greater understanding of their similarities and differences.
their modeling approach, causing some methods to per- This framework is based on representing the model
form better for certain types of modeling problems. For developed by any empirical modeling method as a weight-
example, backpropagation networks (BPN) often require a ed sum of basis functions, and showing how various
large amount of training data to obtain an acceptable methods can be derived depending on decisions about the
model for a given number of input variables, whereas, nature of the input transformation, the type of activation or
statistical methods such as, NLPCR and NLPLS can basis functions, and the optimization criteria for determin-
perform equally well with a smaller ratio of training data ing the adjustable parameters. The insight provided by this
to input variables. ANN usually provide black box models, comparison framework is then used to unify linear and
whereas the model obtained by CART or MARS may be nonlinear empirical modeling methods that combine the
represented in terms of simple rules. Statistical methods inputs as a linear weighted sum before operation of the
with adaptive basis functions such as PPR, usually require basis function. These methods based on linear projection

include linear methods such as, ordinary least squares
*Corresponding author. regression (OLS), partial least squares regression (PLS),
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principal components regression (PCR) and ridge regres- inputs, or distribution of training data in the input space, or
sion (RR), and nonlinear methods such as, backpropaga- relevance of input variables for predicting the output.
tion networks with a single hidden layer, projection pursuit Thus, empirical modeling methods may be divided into the
regression, nonlinear partial least squares regression, and following three categories depending on the nature of input
nonlinear principal component regression. The comparison transformation.
framework shows that all methods based on linear projec-
tion are special cases along a continuum of methods. The • Methods based on linear projection exploit the linear
result of their unification is a new method called Non- relationship among inputs by projecting them on a
Linear Continuum Regression (NLCR) that can specialize linear hyperplane, as shown in Fig. 1(a), before apply-
to any existing method or to a method along the continuum ing the basis function. Thus, the inputs are transformed
between existing methods, with the help of an additional by combination as a linear weighted sum to form the
tuning parameter. An efficient hierarchical training meth- latent variables.
odology is developed for NLCR modeling that trains one • Methods based on nonlinear projection exploit the
node at a time to reduce the residual error of approxi- nonlinear relationship between the inputs by projecting
mation. Since NLCR subsumes all methods based on linear them on a nonlinear hypersurface resulting in latent
projection, the resulting models are at least as good, if not variables that are nonlinear functions of the inputs, as
better, than those obtained by existing methods based on shown in Fig. 1(b) and (c). If the inputs are projected on
linear projection. a localized hypersurface then the basis functions are

local, as depicted in Fig. 1(c). Otherwise, the basis
functions are non-local in nature.

• Partition-based methods fight the curse of dimensionali-2. A common comparison framework for empirical
ty by selecting input variables that are most relevant tomodeling methods
efficient empirical modeling. The input space is par-
titioned by hyperplanes that are perpendicular to at leastThe model determined by any empirical modeling
one of the input axes, as depicted in Fig. 1(d).method may be represented as a weighted sum of basis

functions,
2.2. Type of activation or basis functions

M

ŷ 5O b u (f (a ;x ,x , . . . ,x )) (1)k mk m m 1 2 J The wide variety of activation or basis functions used inm51

empirical modeling methods may be broadly divided into
ˆwhere, y is the k-th predicted output or response variable,k the following two categories:

u is the m-th basis or activation function, b is them mk

output weight or regression coefficient relating the m-th • Fixed-shape basis functions. The basis functions in
basis function to the k-th output, a is the matrix of basis several empirical modeling methods are of a fixed
function parameters, f represents the input transforma-m

tion, and x , ..., x are the inputs or predictor variables. The1 J

variable obtained by transforming the inputs, z 5f (a ;m m

x), is often referred to as the latent variable or projected
input. Specific empirical modeling methods may be de-
rived from Eq. (1) depending on decisions about the nature
of input transformation, type of activation or basis func-
tions, and optimization criteria. These decisions form the
basis of the common framework developed in this paper
for comparing all empirical modeling methods, and are
described in the rest of this section.

2.1. Nature of input transformation

Reducing the dimensionality of the input space is
essential for improving the complexity of the modeling
task, and the quality of the extracted model. Empirical
modeling techniques fight this ‘curse of dimensionality’ by
transforming the inputs to latent variables that capture the
relation between the inputs with less latent variables than Fig. 1. Input transformation in (a) methods based on linear projection, (b),
the number of inputs. Such dimensionality reduction is and (c) methods based on nonlinear projection, non-local and local
usually accomplished by exploiting the relationship among transformation respectively, and (d) partition-based methods.
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shape such as, linear, sigmoid, Gaussian, wavelet, or PPR transform the inputs to minimize the output prediction
sinusoid. Adjusting the basis function parameters error, and PLS and NLPLS maximize the covariance
changes their location, size, and orientation, but their between the projected inputs and output. The nature of the
shape is decided a priori, and remains fixed. input transformation, type of basis functions, and optimi-

• Adaptive-shape basis functions. Some empirical model- zation criteria discussed in this section provide a common
ing methods relax the fixed-shape requirement and framework for comparing the wide variety of techniques
allow the basis functions to adapt their shape, in for input transformation and input–output modeling, as
addition to their location, size, and orientation, to the depicted in Table 1. This comparison framework is useful
training and testing data. for understanding the similarities and differences between

various methods, and may be used for unifying methods
2.3. Optimization criteria based on linear projection, as described in the next section.

The aim of any empirical modeling method is to extract
the underlying input–output relationship and/or input 3. Unification of methods based on linear projection
transformation from the available data. The input trans-
formation is determined by the function, f, and parameters, The latent variable for methods based on linear projec-
a, whereas the model relating the transformed inputs to the tion is a weighted sum of the inputs. The resulting model
output is determined by the parameters, b, and basis may be represented by specializing Eq. (1) to,
functions, q. Empirical modeling methods often use differ-

M Jent objective functions for determining the input trans-
ŷ 5O b u O a x (2)S Dk mk m jm jformation, and the model relating the transformed inputs to

m51 j51

the output. This separation of the empirical modeling
.optimization criteria provides explicit control over the

The comparison framework described in the previousdimensionality reduction by input transformation, and
section indicates that unification of methods based onoften results in more general empirical models. Most
linear projection requires common methods for determin-empirical modeling methods minimize the mean square
ing the different shapes of basis functions, a commonerror of approximation to determine the basis function, q
objective function and a common training methodology.and regression coefficients, b.
Such a unified method is developed in this section forThe criterion used to determine the input transformation
modeling with multiple inputs and a single output.parameters, f and a differ for each method depending on

the emphasis on transforming the inputs versus minimizing
the output error of approximation. For example, PCR and 3.1. Techniques for determining basis functions
NLPCR focus entirely on obtaining an optimum trans-
formation of the inputs by maximizing the variance Each basis function for methods based on linear projec-
captured by the latent variables, whereas, OLS, BPN, and tion maps the linearly projected input, z to the output, y.m

Table 1
Comparison matrix for empirical modeling methods

Method Input transformation Basis function Optimization criteria

OLS Linear projection Fixed shape, linear a – max. squared correlation between
projected inputs and output
b – min. output prediction error

PLS Linear projection Fixed shape, linear a – max. covariance between projected
inputs and output
b – min. output prediction error

PCR Linear projection Fixed shape, linear a – max. variance of projected inputs
b – min. output prediction error

BPN single Linear projection Fixed shape, sigmoid [a, b] – min. output prediction error
PPR Linear projection Adaptive shape, [a, b, u ] – min. output prediction error

supersmoother
BPN mult. Nonlinear proj., nonlocal Fixed shape, sigmoid [a, b] – min. output prediction error
NLPCA Nonlinear proj., nonlocal Adaptive shape [a, f] – min. input prediction error
RBFN Nonlinear projection, local Fixed shape, radial [s, t] – min. distance between inputs and

cluster center
b – min. output prediction error

CART Input partition Adaptive shape, piecewise [b, t] – min. output prediction error
constant

MARS Input partition Adaptive shape, spline [b, t] – min. output prediction error
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2 gUnification of the variety of basis functions used in these max [corr (y,u (Xa ))][var(Xa )] (6)h jm m mammethods requires a general approach that can provide any
where values of g equal to 0, 1, and ` result in BPN, PPRlinear or nonlinear relationship between the latent variable
or OLS; NLPLS or PLS; and NLPCR or PCR, respective-and output, depending on the nature of the training data.
ly. Eq. (6) is a nonlinear version of the optimizationSuch basis functions may be obtained by using univariate
criterion suggested by [12] to unify OLS, PLS, and PCR.smoothing techniques for approximating the training data
The exponents in Eq. (6) may be modified to,in the projected input–output space. A variety of such

smoothing techniques are available including, variable 2 22 11g 22g 3g 22gmax h[corr (y,u (Xa ))] [var(Xa )] j (7)span smoothers [6], Hermite functions [8], automatic m m mam

smoothing splines [10], and backpropagation networks.
This objective function reduces to various existingThe NLCR method developed in this paper can use any of

methods, as summarized in Table 2. The effect of thethese smoothing techniques to determine the appropriate
adjustable parameter, y, on the generality of the empiricalbasis functions.
model may be understood in terms of the bias-variance
trade-off. As g increases from 0 to 1, the model bias

3.2. General optimization criterion for projection increases, while the variance decreases, causing the mean-
directions squares error of approximation to go through a minimum.

The NLCR training methodology aims to find this value of
Unification of methods based on linear projection re- y that optimizes the bias-variance trade-off as described in

quires a general optimization criterion that consists of the next section.
information from both the inputs and output, and can The remaining adjustable parameters, namely the regres-
specialize to the criterion used by existing methods based sion coefficients, b and basis functions, u are determinedm mon linear projection. Thus, the optimization criterion by minimizing the mean-squares error of approximation,
should span the continuum between different methods

I1based on linear projection. The techniques of PCR and 2] ˆmin O ( y 2 y ) (8)i iINLPCR lie at one extreme of this continuum, since their b ,um m i51

optimization criterion is unaffected by the nature of the
Eq. (7) and Eq. (8) constitute the general objectiveoutputs or basis functions. Both methods focus on trans-

function that unifies all methods based on linear projection.forming only the input space by maximizing the variance
captured by the projected inputs as,

3.3. Hierarchical training methodology

max var(Xa ) (3)h jma The final challenge for the unification of empiricalm

modeling methods based on linear projection is the de-
At the other extreme of the continuum of methods based velopment of a common training methodology that uses

on linear projection, are the techniques of OLS, PPR and the general basis functions, and the common optimization
BPN, since their optimization criterion focuses entirely on criterion, to determine the empirical model in an efficient
minimizing the output prediction error. This optimization manner. Training methodologies for empirical model
criterion is equivalent to maximizing the square of the building may determine the model parameters simultan-
correlation between the actual and approximated outputs eously for all the basis functions, or hierarchically for one
[1] and may be written as, basis function at a time. Examples of the simultaneous

approach include eigenvalue decomposition for computing
2max corr (y,u (Xa )) (4)h jm m the projection directions in PCR and PLS, and the erroram

backpropagation algorithm for BPN [11]. Examples of the
The optimization criteria at two extremes of the con- hierarchical approach include the Nonlinear Iterative Par-

tinuum of methods given by Eq. (3) and Eq. (4) may be tial Least Squares (NIPALS) algorithm [9] for PCR and
combined as, PLS, cascade correlation for BPN [4], and the PPR

algorithm [5]. Hierarchical modeling methods are usually
2max corr (y,u (Xa ))var(Xa ) (5)h jm m mam

Table 2and should result in a method between PPR and NLPCR.
Specialization of objective function for projection directions to existingIndeed, Eq. (5) has been used as the optimization criterion
methods based on linear projection

for NLPLS modeling by [13] for quadratic PLS, [14] for
g Linear basis functions Nonlinear basis functionsspline PLS, and [7] for neural net /PLS.
0 OLS PPR/BPNEq. (3), Eq. (4) and Eq. (5) may be combined to obtain
1/2 PLS NLPLSa general optimization criterion that subsumes all methods
1 PCR NLPCRbased on linear projection as,
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more efficient than their simultaneous modeling counter- • Unique values of the projection directions for g 51 may
parts since an existing model may be easily adapted by be determined by maximizing the variance captured by
adding new nodes to capture the residual error of approxi- the projected inputs. If orthogonal projection directions
mation as necessary. are not required, then the projection directions for all

The steps comprising the hierarchical, node-by-node nodes will be equal to the first principal component of
NLCR training methodology, are shown below. the input data matrix, which is the eigenvector of the

input covariance matrix.
1. For g ←1 to 0, • Decreasing the value of y causes the projection direc-
2. Add new node and optimize, tions to gradually rotate away from those capturing the
3. Projection directions, relationship between the inputs to those minimizing the
4. Basis functions, u output prediction error.m

5. Regression coefficients, bm

6. Update model Thus, the NLCR model may be first determined for
7. Update output residual g 51, and the resulting parameters used as initial values of
8. Update input residuals or backfit previously added the parameters for modeling at smaller values of g. This

nodes approach is currently being explored, and detailed results
9. If prediction error is acceptable, go to ten, else go to will be included in the final version of this paper.

two Preliminary examples show that it provides reproducible
10.End results and decreases the computation time for NLCR

modeling.
The projection directions are computed by optimizing

the general objective function for the selected value of g,
for the basis function and regression coefficient determined 4. Illustrative example
in the previous iteration. If orthonormal projection direc-
tions are desired, as in PCR and PLS, then both the input The properties of NLCR are illustrated by solving the
and output residuals need to be updated, otherwise, the following examples based on synthetic data. The NLCR
input residual is left unchanged. The modeling ability of training methodology is implemented in Matlab, and is
each node may be improved in Step (8) by accounting for available from the corresponding author.
the nature of previously added basis functions by adjusting
their parameters by backfitting or backward pruning [6]. 4.1. Parabola example

The NLCR training methodology can specialize to
hierarchical algorithms for existing methods based on This set of illustrative examples is based on data

2linear projection. For example, the NIPALS algorithm for generated by the following model,y 5 t x 5 t 11 1 1

PLS may be obtained by restricting the basis functions to 0.1´ , x 5 t 1 0.1´ , x 5 s ´ , x 5 s ´ where, ´ , i51 2 2 2 3 3 3 4 4 4 i

be linear, selecting g 50.5, and determining the input and 1, ..., 4, denote independent and identical Gaussian white
output residuals after training each node. Backfitting is not noise with unit variance, s and s denote the standard3 4

needed since the projection directions are fixed by the deviation of variables x and x , respectively, and t and t3 4 1 2

orthogonality requirement. Specializing the general method are approximately linearly related as shown in Fig. 2. This
to PPR, requires determining the projection directions, model indicates that the optimum projection direction for
basis functions, and regression coefficients by maximizing this problem is approximately [1 0 0 0]. The performance
the objective function for g 50. and computing the output of NLCR is compared for different amounts of training
residual only. data, and different variance of the irrelevant variables. For

Efficient techniques for finding the best value of g are each example, the same set of testing data are used,
essential for the application of NLCR modeling to practical consisting of 95 data points. Such a large amount of testing
problems. The optimum value of g may be found from data are selected to evaluate the ability of each example to
models developed for several values, and selecting the y capture the underlying hypersurface. All the inputs are
and number of basis functions that result in the smallest scaled to have a zero mean, with x and x of unit standard1 2

error of approximation for testing data. Unfortunately, the deviation, and x , and x of standard deviation equal to the3 4

nonlinear nature of the model can make this trial-and-error selected values of s and s , respectively. For each case3 4

approach computationally expensive for large problems. study described below, the models were determined by
Furthermore, the modeling with several different initial trial-and-error with random initialization of the model
values of the parameters may be necessary to avoid local parameters, and by using the results at adjacent values of g

minima. These practical and computational issues may be for initialization. Both approaches yielded similar results
addressed by exploiting the following properties of NLCR [2].
models. The results of NLCR modeling with 5 training data with

s 5s 51 are summarized in Table 3. As expected, the3 4
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Table 4
Data from Table 1, cluster 2 of [16], as used for NLCR modeling

Gap a c Radius ion Density At. wt.

2.1 4.61 4.61 29 0.0001 84.6
2.26 4.359 4.359 29 3.191 40.09
3.3 3.251 5.209 22 5.651 81.369
3.9 3.823 6.261 53 3.536 97.434
4 5.481 5.171 22 4.502 181.836
5.9 5.58 4.69 22 0.0001 60.069
6 4.359 4.359 29 3.191 40.09
6.2 3.11 4.98 25 3.255 40.99
7 7.45 6.97 59 0.0001 136.086
8.4 4.9134 5.4052 22 2.65 60.078
4 5.481 5.171 22 4.502 181.836

important when the ratio of training data to input variables
is large. The optimum projection directions also tend to be
closer to [1 0 0 0] as the amount of training data increases,
and the basis function starts looking more like the underly-
ing parabola.

Fig. 2. Data for parabola example without noise.

4.2. Materials structure-property prediction

projection directions change the orientation of the projec- This case study models the relationship between various
tion hyperplane from that maximizing the captured vari- material properties with the objective of predicting the
ance for g 51, to that minimizing the prediction error for properties of new materials. The training and testing data
the training data at g 50. The error of approximation for for all the case studies are identical to those used by three
training data decreases with decreasing values of g and other papers in this special issue: Jackson, et al. using
increasing number of nodes, but the error of approximation rough sets [16], Chen et al. [15], using the OFBNN and
on testing data goes through a minimum at g 50.85 with Pao and Meng using the ratio-constrained mapping [17].
one node. This optimum NLCR model is significantly In Table 4, Table 5 and Table 6 the data used in this
better than that obtained by the existing methods of PPR/ case study are shown. In each of the three tables, the last
BPN at g 50, NLPLS at g 50.5, and NLPCR at g 51. As column (atomic weight) contains the dependent variable.
shown in the last column of Table 3, the performance of The first five columns contain the input variables. The last
PPR/BPN is several orders of magnitude worse than that row in each table, contains the testing set, while the
of other methods based on linear projection. remaining rows make up the training set. The data in the

The results of NLCR modeling for different number of three tables have been broken down into subgroups from a
training data after decreasing the value of s and s to 0.1 larger data base according to clusters determined by [15].3 4

indicate that as the number of training data increases, the For the data in Table 4, the best NLCR model was
value of g for the best NLCR model shifts towards zero. obtained for g 50, with eight basis functions determined
For five training data the model with the smallest error of by the supersmoother [6] (Fig. 3). The training MSE is
approximation for testing data has g 50.15, for ten training 0.00085 based on original data. The desired feature value
data, g 50.1, and for fifty training data, g 50.02. This is 181.8360 and the predicted value is 181.8357. The
behavior of g indicates that obtaining a biased model by loading directions, a, were initialized using results from
capturing the relationship between the inputs is less principal component regression with g 51. Models for

Table 3
Results of NLCR modeling with five training data, 95 testing data, s 5s 513 4

g a a a a b MSE train MSE test11 21 31 41 1

1.0 0.6845 20.6870 0.0866 20.2280 0.8517 7.455e-02 6.147e-01
0.95 0.6891 20.6937 0.0795 20.1939 0.8562 6.701e-02 5.551e-01
0.85 0.6909 20.7014 0.0895 20.1506 0.8609 5.887e-02 5.318e-01
0.65 0.6873 20.7085 0.1259 20.0985 0.8667 4.883e-02 5.822e-01
0.45 0.6793 20.7113 0.1706 20.0591 0.8716 4.032e-02 7.295e-01
0.25 0.6607 20.7088 0.2469 20.0121 0.8783 2.866e-02 1.196e100
0.05 0.5714 20.6636 0.4771 0.0740 0.8922 4.073e-03 2.526e101
0.0 0.5146 20.6276 0.5759 0.0982 0.8940 7.871e-04 2.134e107
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Table 6
Data from Table 2, cluster 3 of [15], used for NLCR modeling

Gap a c Radius ion Density At. wt.

0.23 6.479 6.479 89 5.777 236.55
0.33 4.457 5.939 82 6.25 236.55
0.36 6.268 6.479 71 5.72 189.79
0.72 6.095 6.095 89 5.615 191.47
1.35 5.868 5.868 59 4.798 145.77
1.4 5.653 5.653 71 5.316 144.71
1.7 4.361 4.954 66 4.819 78.96
2.3 6.101 6.101 82 5.924 192.97
2.7 5.667 5.668 66 5.318 144.33

Fig. 3. Result of NLCR model for data in Table 4.
2.8 6.473 6.473 126 6.0 234.77
2.91 5.69 5.69 82 4.72 143.449

Table 5 2.95 6.042 6.042 96 5.667 190.44
Data from Table 2, cluster 1 of [15], as used for NLCR modeling 3.05 5.568 5.568 53 3.97 80.096

3.17 5.405 5.405 77 4.137 98.993Gap a c Radius ion Density At. wt.
2.3 5.45 5.45 59 4.135 100.69

0.57 5.943 11.217 71 5.6 334.97
1.2 6.099 11.691 66 5.808 286.798
1.53 5.489 11.101 53 4.73 242.468
1.7 5.606 11.006 66 4.73 242.468
1.74 5.606 10.88 71 4.7 243.43
1.8 5.981 10.865 66 5.759 335.51
2.1 4.145 9.496 53 7.101 232.654
2.43 5.351 10.47 53 4.332 197.388
2.638 5.751 10.238 53 4.66 241.718
2.91 5.74 10.776 59 4.549 246.93
3.05 5.568 10.04 53 3.97 380.096
2.05 5.463 10.731 59 4.105 199.9

Fig. 5. Result of NLCR model for data in Table 6.

NLCR modeling are compared with those obtained bysmaller values of g were developed with the initial
OFBNN in Table 7. This indicates that the results ofparameters determined by the previous larger value of g.
NLCR modeling are comparable to those of OFBNN.Such an initialization of the model parameters, instead of a

random initialization, is likely to decrease the chances of
getting caught in local minima.

5. Conclusions and discussionFor the data in Table 5, the modeling approach was
similar to that for the previous example (Fig. 4). The best

A common framework is presented for comparing neuralresult was obtained for g 51.0, with ten hidden nodes
and statistical empirical modeling methods. This frame-determined by the supersmoother.
work is based on the representation of empirical models asTraining MSE is 215.832 based on scaled data. The
expansion on a set of basis functions, and the realizationdesired feature value is 100.69 and the predicted value is
that various methods may be obtained depending on97.3181.
decisions about only three criteria: the nature of the inputFor the data in Table 6, the best result was again
transformation, type of basis functions, and optimizationobtained for g 51.0, with loading directions being initial-
criteria for estimating the model parameters.ized by linear PCR (Fig. 5). The training MSE based on

The insight provided by the common framework is usedthe scaled input data is 0.0168. The desired feature value is
to develop a new empirical modeling method called199.9 and the predicted value is 217.4902. The results of
nonlinear continuum regression (NLCR) that subsumes
existing methods based on linear projection including,
OLS, PLS, PCR, BPN, PPR, NLPLS, and NLPCR. The
NLCR model uses adaptive basis functions, a general

Table 7
Comparison of % prediction error of NLCR and OFBNN

Data set NLCR % prediction error OFBNN % prediction error

Table 4 0 0
Table 5 3.35 13.26
Table 6 8.80 4.17

Fig. 4. Result of NLCR model for data in Table 5.
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